

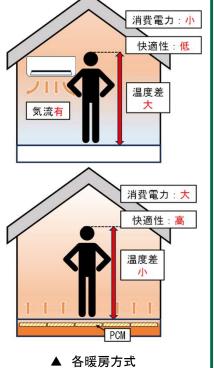
^{個州大学} _{工学部 建築学科} 高村研究室 \型/ Takamura-lab.

■ 研究背景

集合住宅への床輻射暖房の採用率が高まっている

■特徴

快適性が高い⇔立ち上がりの消費電力が大きい →省エネ化が必要

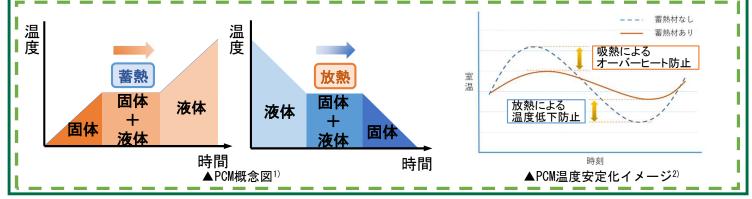

床輻射暖房に、再生可能エネルギーと<mark>潜熱蓄熱材(PCM)</mark>を組み合わせる→省エネ化が示された

■課題

暖房稼働時にPCMへの<mark>蓄熱負荷</mark>が発生する →PCM無よりも消費電力量が高くなる

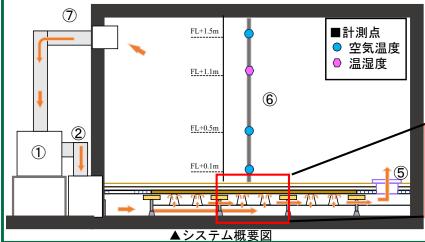
PCMの蓄熱負荷を削減する

→PCMの蓄放熱効率の向上が必要


▲ 各暖房方式 (上:対流式暖房、下:床輻射暖房)

■ 研究目的

PCMの蓄放熱効率の向上を目指す


- →全空気式床輻射暖房の床下にPCMを設置し、PCMの仕様の違いによる蓄放熱効率の比較を行った
- 潜熱蓄熱材(PCM)

潜熱蓄熱材(PCM)とは、物質が相変化する際に吸収・放出する潜熱を蓄熱することができる建材であり、コンクリート等の顕熱を利用した蓄熱建材に比べて、任意の温度域において少量で大容量の蓄熱が可能である。この特徴から冬期室温低下抑制効果や夏期遮熱効果が期待できる。

■ システム概要

■風の流れ:①室内機→②ダクト→③パネル下部→④パネル上部→⑤還流口 →⑥室内→⑦ダクト→①室内機

- ■室内を暖房する流れ パネル内に通った空気の熱
- →床面を温める
- →床面からの輻射熱で暖房

▲床下パネル断面図

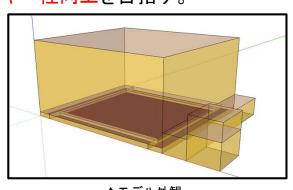
■ 実測概要

【目的】

PCM容器形状変更によるPCMの蓄放熱効率向上効果の検証、省エネルギー性向上を目指す。

【検討項目】

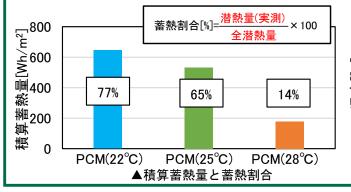
- ①PCM表面積の増加による蓄放熱効率 向上
- ②ヒートシンクによる蓄放熱効率向上

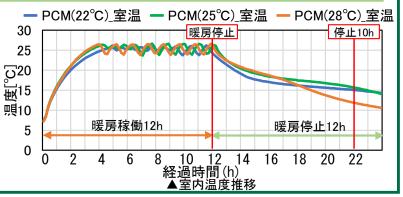


▲実験の様子

■ シミュレーション概要

【目的】


非定常シミュレーションプログラム TRNSYS18、TRNFlowを使用し、再現したモデルにより、再生可能エネルギーや外気冷熱導入によるシステムの省エネルギー性向上を目指す。



▲モデル外観

■ 研究結果(実測)

相変化温度が低いPCMの方が、蓄熱量及び蓄熱割合が多かった。そのため、相変化温度が低いPCMの方が、暖房停止10時間以降で室温低下が小さかった。

